Data-Driven Multimode Fault Detection for Wind Energy Conversion Systems
نویسندگان
چکیده
منابع مشابه
Reinforcement Learning Based PID Control of Wind Energy Conversion Systems
In this paper an adaptive PID controller for Wind Energy Conversion Systems (WECS) has been developed. Theadaptation technique applied to this controller is based on Reinforcement Learning (RL) theory. Nonlinearcharacteristics of wind variations as plant input, wind turbine structure and generator operational behaviordemand for high quality adaptive controller to ensure both robust stability an...
متن کاملA Data-Driven Maintenance Support System for Wind Energy Conversion Systems
With the rapid growth of wind energy installed capacity, optimized maintenance has gained increasingly attentions from both researchers and wind farm owners. Conditionbased maintenance (CBM) has been introduced to the wind energy industry in order to ensure the availability and safety of the wind energy conversion (WEC) system, while minimize the operating and maintenance (O&M) costs. In this p...
متن کاملRobust Fault Detection of Wind Energy Conversion Systems Based on Dynamic Neural Networks
Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeabl...
متن کاملDynamic Data-Driven Fault Diagnosis of Wind Turbine Systems
In this multi-university collaborative research, we will develop a framework for the dynamic data-driven fault diagnosis of wind turbines which aims at making the wind energy a competitive alternative in the energy market. This new methodology is fundamentally different from the current practice whose performance is limited due to the non-dynamic and non-robust nature in the modeling approaches...
متن کاملreinforcement learning based pid control of wind energy conversion systems
in this paper an adaptive pid controller for wind energy conversion systems (wecs) has been developed. theadaptation technique applied to this controller is based on reinforcement learning (rl) theory. nonlinearcharacteristics of wind variations as plant input, wind turbine structure and generator operational behaviordemand for high quality adaptive controller to ensure both robust stability an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2015
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2015.09.597